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We present a detailed description of the rich variety of phase transitions exhibited by the contin-
uum Heisenberg model of spin fluid, treated by means of integral equation methods (mean spherical
approximation and reference hypernetted chain equation) and simulation techniques (canonical en-
semble and Gibbs ensemble Monte Carlo). We focus here on ferromagnetic interactions. An order-
disorder transition and a gas-liquid transition are characterized. Both transitions are coupled at low
temperature, but near the gas-liquid critical point only ordered states are involved in the gas-liquid
transition. Our data preclude the existence of a tricritical point, but there is evidence that the line
of Curie points may end up in a critical end point at the gas-liquid spinodal. At low densities there
is a strong tendency to clustering, and the system organizes in magnetized droplets. The reference
hypernetted chain equation yields a spinodal line (locus of Curie points) for moderate to high den-
sities, whereas at low densities the equation breaks down at a singularity with the characteristic

behavior of a square root branch point.

PACS number(s): 61.20.Gy, 64.60.Cn, 71.10.+x

I. INTRODUCTION

The need to extend the well developed studies of mag-
netic lattice models to continuum disordered systems can
be understood in terms of the great variety of physical
properties connected to the lack of translational order,
that can only be strictly accounted for in the context of
liquid state theory. Such is the case of the effects asso-
ciated with gas-liquid transitions (which as we will see
might be coupled with changes in the magnetic ordering
as well) or phenomena such as magnetostriction, absent
by definition in rigid lattice models. Moreover, since the
late 1960s there have been reports on the existence of
liquid ferromagnetic materials, such as the Au-Co alloy
studied by Bush and Guentherodt [1] and further con-
firmed by Kraeft and Alexander [2].

In this regard, disordered systems with interparticle
spin interactions of classical Heisenberg symmetry have
been studied in the past within the framework of classical
statistical mechanics, in particular, by means of analyt-
ical approaches like the mean spherical approximation
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(MSA) [3-5] or mean fieldlike treatments [6,7]. A funda-
mental drawback in the use of the MSA lies on the fact
that orientational and spatial contributions to the pair
correlations are fully decoupled, to the point that the
spatial distribution reduces to that of the hard-sphere
fluid. Thereby, an MSA treatment will very likely be
more suitable for spinglass systems (in which the spatial
degrees of freedom are frozen and, therefore, decoupled
from the orientational ones) than in the fully annealed
spin fluid system. A nonlinear approach is thus required
for a better theoretical description of the Heisenberg spin
fluid. Recently, a two dimensional quantum spin fluid
has also been studied in detail by path-integral Monte
Carlo simulation and in a mean field approach by Marx,
Nielaba and Binder [8].

The aim of this work is to explore the phase transi-
tions that occur in a particularly simple model of disor-
dered magnetic material, the classical Heisenberg model
to a level of approximation far beyond the MSA. We will
concentrate on the ferromagnetic system and in a forth-
coming paper [9] a detailed analysis of the transitions un-
dergone by the antiferromagnetic Heisenberg fluid will be
presented. On one hand, we resort to an integral equation
which has proven to yield excellent results in other non-
spherically symmetric fluid systems, namely, the refer-
ence hypernetted chain (RHNC) [10,11] and on the other
to computer simulations, using two complementary tech-
niques, canonical ensemble and Gibbs ensemble (GEMC)
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Monte Carlo [12]. The combined use of theoretical tools
like the RHNC and MSA equations and computer simula-
tion will furnish information on the location of spinodal
decomposition lines and phase coexistence boundaries,
as well as details on particle association at low temper-
atures and the configurational structure adopted by the
fluid when crossing the instability boundaries.

The model Hamiltonian considered in this work is the
simplest natural choice for a Heisenberg magnet, hard
spheres of diameter o with embedded Heisenberg spins,
whose coupling constant is given by a Yukawa interaction

ro
r>2o,

pu12) = { 0 oy (1)

with

e—z(r—a')

BJ(r) = —3K (1.2)

r
and the rotational invariant ®!1°(12) = s; - s, s; being
the unit vector describing the orientation of the spin in
particle 3.

With the interaction so defined, K > 0 describes a
system where parallel configurations are favored (ferro-
magnetic), whereas K < 0 implies favored antiparal-
lel configuration (antiferromagnetic). There is an es-
sential qualitative difference between the antiferromag-
netic Heisenberg interaction and the dipole-dipole po-
tential (although both favor antiparallel configurations)
and is connected with the fact that this latter interac-
tion favors head-to-tail (i.e., parallel) configurations as
well, and, therefore, dipolar systems might exhibit both
ferroelectric and antiferroelectric transitions [13]. Obvi-
ously, a Heisenberg antiferromagnet will never undergo
a ferromagnetic transition. The screening parameter z
determines the range of the interaction. In this work all
computer simulation and RHNC results presented corre-
spond to zo = 1.

The structure of this work can be outlined as follows.
The next section will deal with the symmetry proper-
ties of the Heisenberg interaction and its implications in
the particular formulation of the Ornstein-Zernike (OZ)
equation and, consequently, the RHNC theory. We also
include here explicit expressions for the calculation of the
thermodynamic properties. In Sec. III we recall some of
the leading results of the MSA analytic solution and its
application to the determination of spinodal lines. Rel-
evant details regarding the use of Gibbs ensemble simu-
lation in systems with spin interactions can be found in
Sec. IV. Explicit results for the order-disorder and gas-
liquid transitions are found in Sec. V, where we also pay
attention to the singular behavior of the RHNC equa-
tion in the boundaries of its nonsolution region. Fi-
nally, an appendix with some numerical subtleties es-
sential in an efficient solution of the RHNC equation
for systems with Heisenberg spin interactions is also in-
cluded. In particular, we introduce an extension of a
hybrid Newton-Raphson algorithm [14] adequate for sys-
tems with angular-dependent functions, with consider-
able simplifications derived from the peculiar symmetry
of the spin-spin interaction.
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II. SYMMETRY PROPERTIES
OF THE HEISENBERG INTERACTION.
RHNC EQUATIONS FOR THE SPIN FLUID

A. Interaction symmetry and averaged low density
limit of the pair distribution function

With the intermolecular potential described by
Eq. (1.1) one immediately notices that the correlation
functions must have a particularly simple orientational
dependence, since the rotational invariant ®10 is inde-
pendent of rq5, the vector joining the centers of particles
1 and 2. This also implies that the angular averages of
the potential are extraordinarily simple. First, one has
(u(12))w,w, = 0, a feature common with all multipolar
interactions. But here we have, in addition

(u(12))w, = (u(12))w, =0 . (2.1)
In general the average of all odd powers of u(12) will
vanish. For even powers we will have a simple expression

J(r)%*

12)2k = X7
(u(12)%)oyw, 2%k +1

(2.2)

With this it can be shown that the radial component of
the low density limit of the pair distribution function,
g(12), is simply

. sinh 8J(r
B, goo(r) = (exp [~0u(12)r = 5T A . (23)
An angular averaged interaction (or average potential of
mean force) can be defined by

_ sinh BJ(r)
Buay(r) = _ln———ﬂJ(r) ,

(2.4)
which implies that, whatever the sign of the coupling
constant, there will be a net attraction between parti-
cles, and, thus, gas-liquid condensation might occur for
sufficiently low temperatures, as long as the range of the
interaction is sufficiently large [15,16].

B. The OZ relation and RHNC closure

The aforementioned properties of the interaction im-
ply that the expansion of the total correlation function,
h(12), in rotational invariants [17] [and the same applies
to the direct correlation function, ¢(12)] contains only
the subset of A™"(r) coefficients with [ = 0, and since
|m —n| <! < m + n, one has the additional restriction
m = n. Hence

h(12) = Y RHO(r)@"°(12) . (2.5)
l

Moreover, the relation between these h™™ coefficients
and those of the spherical harmonic expansion in the ax-
ial reference frame (in which the z axis joins the molec-
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ular centers) is straightforward

hitm(r) = (=1)™R"0(r) . (2.6)

1
2l+1
This alternative expansion is especially useful since for
potentials with axial symmetry the OZ equation in
Fourier space decouples into a linear matrix equation [11].
Hereafter, we will only refer to axial (lower indices) coef-
ficients. In Fourier space the OZ relation reads

h(k,w1,wz) = &(k,w1,ws)
+p/E(k,wl,wg,)fz(k,wg,,wz)dw;; y (27)

which, by using the axial spherical harmonic expansion,
in our case decouples into

it (k) = Etm (k) + (=1)™ pétim (k) hatm () -

Because of Eq.(2.6) the only relevant equations corre-
spond to m = 0. Note that in this particular case
the fuo(k) transforms are evaluated by standard three-
dimensional Fourier transformation of fio(r) and the
cumbersome higher order Hankel transforms [11] can be
avoided.

The RHNC closure relation now reads

(2.8)

cuo(r) = =810 — yuo(r)
+<exP[—ﬁU(12)

+4m Z Tnno (T)Ynm (wl )le‘ﬁl (QJ2)

n,m

+Bo(r)]|l10> , (2.9)

where yo(r) = hyio(r) — ciio(r) and (- - - |110) denotes the
projection onto the angular function Yjo(w1)Yjo(w2). The
function Bg(r) is the bridge function of a reference sys-
tem, for which in this work we have used the hard-sphere
fluid, described using parametized expressions for g(r)
and the background function, y(r) [18]. The hard-sphere
diameter is chosen so that the free energy of the system is
minimized, according to the optimization criterion pro-
posed by Lado, Foiles, and Ashcroft [10], which reduces
to finding the hard-sphere diameter o,y which fulfills

® OBo(r;ore
/ 72 [go00(T) — go(7; Tref)] —OBQL”)dr =0.
0 Oref

(2.10)

Equation (2.9) coupled with the OZ relation

péuo(k)?
1 — péuo(k) ’

constitute the RHNC approximation for the Heisenberg
spin fluid. We have solved this highly nonlinear set of
coupled equations using a hybrid Newton-Raphson pro-
cedure [14] extended to systems with noncentral forces

Juo(k) = (2.11)

(see Ref. [19] for a method similar in scope applied to
dipolar hard spheres). Some technical details can be
found in the Appendix.

A key feature in the RHNC approximation is that
one can have a full description of the thermodynam-
ics in terms of the correlation functions, i.e., thermody-
namic integration can be performed explicitly over the
closure relation leading to simple explicit expressions for
the thermodynamic potentials. This desirable feature,
shared by MSA and HNC, is absent from other approx-
imations like the hybrid MSA (HMSA) or the crossover
integral equation [20,21]. The excess internal energy sim-
ply reads

BU/N = —61ere"’/ hy1o(r)re=*"dr (2.12)

and the virial equation
2
BP/p=1- ?P039000(0'+)
——27er€“’/ hi1o(r)(zr + 1)re *"dr . (2.13)

Finally, the excess free energy in the RHNC approxima-
tion is given by

oo

AN = 2mp / g0(r) Bo(r)r?dr

Oref

ot / ™ S o+ 1){ln[1 + phuo(k)]
0 1

4n2p
—phuo(k) + p*huo(k)

x (%B,m(k) - «*,,,o(k)> }dk - %péooo(ﬁ) .
(2.14)

Here the so-called “universality” principle of the bridge
function [10] is understood, which despite its limited va-
lidity [22], in this particular case leads to expressions
whose thermodynamic consistency is remarkable.

Other quantities of interest are the inverse isothermal
compressibility

{e <]
Xooo = 1— 47"/’/ r2cooo(r)dr (2.15)
0
and inverse isothermal magnetic susceptibility
oo
X110 =1~ 4mp / r2eiio(r)dr (2.16)
()

quantities that should vanish at the gas-liquid spin-
odal and at the Curie point, respectively. In the
paramagnetic-antiferromagnetic transition, the corre-
sponding Néel point is characterized by a singularity
in px110/B8 associated with a finite discontinuity in its
derivatives (but the susceptibility remains finite when the
system undergoes the transition [23]) and a zero in

oo
Xzz0 =1- 47TP/ r2cag0(r)dr . (2.17)
0
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FIG. 1. ¢°°°(r) and h'"°(r) components of the total cor-
relation function for the Heisenberg ferrofluid at low density
(po® = 0.1 and T* = 3). MC simulation (symbols) vs RHNC
(lines).

These orientational quantities are closely connected with
the inverse of the G; and G5 Kirkwood parameters, which
in dielectric media are related with the permitivity and
Kerr constant, respectively [24].

Figures 1 and 2 illustrate the accuracy of the RHNC
approximation for the determination of the correlation

T T T

h'"o (r)

1 1 L

ric
FIG. 2. ¢°°(r) and h"°(r) components of the total corre-
lation function for the Heisenberg ferrofluid at high density
(po® = 0.7 and T* = 21.3). MC simulation (symbols) vs
RHNC (lines).
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TABLE I. RHNC vs MC results for a Heisenberg ferrofluid.

pa’ T BU/N BP/p

MC RHNC  MC _ RHNC
0.7 21.43 -0.040 -0.039 5.64 5.69
0.1 3.33 -0.135 -0.140 1.14 1.20

functions of the Heisenberg ferrofluid. In both the low
and high density calculations the agreement between the-
ory and simulation (described in Sec. V) is almost perfect.
This is complemented by some results for the thermody-
namic properties presented in Table I.

III. MEAN SPHERICAL APPROXIMATION.
AN ANALYTIC APPROACH

The solution of the MSA for systems with interaction
potentials described by Eq. (1.1) was found some time
ago by Hgye and Stell [3]. They reduced the angular-
dependent integral equation to a simple one-component
Yukawa problem [25] with a peculiar core condition [26]
(h'1% = 0 inside the core). After tedious algebraic manip-
ulation it all reduces to finding the roots of the equation

1
3 2 2, _
ug +uj — —2z°up =0,

; (3.1)

with

up = 66K (1 — wv/K)? ,
u; = —3¢K(1 —wv/K)(1 —yv/K) ,

where w = (e7% — 1)/2z, v = (¢7* + 1)/2z, and £ =
mpo3 /6. The parameter v fully determines the MSA so-
lution and is related to the excess internal energy

BUS /N = —>o(€, K). (3.2)

When the interactions are ferromagnetic the MSA so-
lution presents a Curie line when ug = (—1++v1 + 22)/2.
By using Egs. (16), (17), and (21) of Ref. [3] it is easy to
determine the locus of Curie points in the K —¢ plane (or
more naturally T* — ¢ with T* = 1/|K|). Together with
the spinodal line, the MSA for the one Yukawa problem
exhibits a nonsolution line [4] which is defined by the
equation

D [ug +uf — i—zzuo] =0, (3.3)
where D refers to the discriminant of the algebraic equa-
tion. Thus, Eq. (3.3) determines the onset of complex
solutions in the MSA. In Fig. 3 we show the MSA spin-
odal and nomnsolution lines for the ferromagnetic inter-
actions. We see that for low z the no-solution line is
squeezed against the spinodal and they are hardly dis-
tinguishable. As z increases the difference is more ap-
parent. A determination of the gas-liquid transition us-
ing MSA thermodynamics (as was done by Rushbrooke,
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FIG. 3. Curie and nonsolution lines in the MSA for a
Heisenberg ferrofluid with varying Yukawa screening param-
eters [see Eq. (1.2)].

Stell, and Hgye for the dipolar hard-sphere fluid [27]) is
prevented by the location of the complex solution region
in the T* — ¢ diagram. On the contrary, for antiferro-
magnetic interactions, where by construction there is no
antiferromagnetic transition in the MSA (since it is as-
sociated with the coeflicients happ which are neglected),
it will be possible to predict a gas-liquid transition from
the MSA internal energy route to thermodynamics [9].

IV. GIBBS ENSEMBLE SIMULATION
IN THE SPIN FLUID

The GEMC method [28] facilitates the investigation of
equilibrium between two phases by simulating two sub-
systems that do not have energy interactions between
them, but exchange volume and particles. Total volume
and total number of particles are constant but the values
in the subsystems change so that mechanical and chemi-
cal equilibria conditions are fulfilled.

We have carried out GEMC simulations to investigate
the liquid-gas coexistence curve of our spin fluid, using
two cubic boxes with periodic boundary conditions. In
each box the interaction potential was truncated at half
the box length L/2. A long range correction to the in-
ternal energy was obtained by estimating the interaction
energy of one particle with the particles beyond the cutoff
distance through

ULr(si) = Ns; - %/\(L) s (4.1)

where
M) = 25 /L Z J(r)dr . (4.2)

The approximation (4.1) amounts to assure that the par-
ticles beyond L/2 are distributed uniformly with orien-
tation M/N independent of position, where

N
M= Zsk .
k=1

The long range correction to the total energy is then

(4.3)
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given by

Ur = %A(L)Mz : (4.4)

In the GEMC method three types of MC moves are re-
quired: displacements of particles within the subsystems,
volume changes of the two subsystems (in such a way
that the total volume remains constant) and exchange
of particles between subsystems. These three steps were
performed following the procedure described in Ref. [28].
However, the efficiency of the simulations were improved
by using a biasing scheme for sampling orientational co-
ordinates [29].

The interaction energy of a particle ¢ with the other
particles of the simulation box is given by

Wi =) une(rig) + 8- Y J(rig) H(L/2 — 155)s;
J#i Jj#i
+A(L)s; - M, (4.5)
where up, is the hard-sphere potential, H(z) is the step
function, and a long range correction term has been in-
cluded. If the particle ¢ does not overlap with any other
particle, Eq. (4.5) can be written in the form

u; =s; - Wiqg + A(L) , (4.6)

where

W;g=s;- z J(T',',')H(L/Z — r;_,-)sj + X(L) E S; (4.7)
J#i Jj#i

depends on positions and orientations of the rest of the

particles in the subsystem as well as on the position of

particle 7 but not on its orientation.

Suppose we have generated a trial position for the par-
ticle ¢, and this position is not rejected due to the hard-
sphere interactions between particles. Then we choose a
new orientation of the normalized s; vector according to
the modulus and orientation of W ;4.

The new vector s; is chosen with probability given by

exp [—B (Wia - si)]

a (Si) = fexp ['—ﬂ (Wid X si)] dSi 9 (4.8)
which by integration leads to
y _ exp[—B (Wia - s:)]
o (S,) = 7 (l W,‘d |) ) (4.9)
where
Z( W) = Wﬂid\ sich (8| Wi |) . (4.10)

According to detailed balance prescription [30] in a
translational (and rotational) move of a particle without
change of box, the acceptance probabilities, A, should
fulfill
A(r?,s? | r7,s?) _ ¢ (rg,s? | r7,s?) exp[-B(WE; -s7)]
A(rg,s? | rP,s?)  a(r},s?[r?,s?) exp[—B (WS, -s?)]

_Z(Wy)

RAGAN

(4.11)
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TABLE II. Technical details of the GEMC simulations. N=216, V/o® = 540, N2
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/10° = 100,

cycles

N:;:,e,/lﬂs = 200, N; = 216, N., = 1080 (except columns F and G for which N., = 432 and 216,

respectively).
Case A B C D E F G
T 4.485 4.689 4.893 5.097 5.301 5.505 5.709
pe0® 0.104(6)  0.131(7)  0.153(8)  0.175(30) 0.208(28) 0.216(11) 0.253(8)
o1 0.782(6)  0.756(8)  0.724(8)  0.683(9)  0.641(17) 0.590(11) 0.539(7)
(BU/N),  -0.10(1)  -0.14(3)  -0.19(4)  -0.21(4)  -0.45(2)  -0.44(1)  -0.79(1)
(BU/N),  -6.66(7)  -6.09(8)  -5.51(9)  -4.86(8)  -4.19(1)  -3.71(1)  -3.05(1)
(Bpo®),  0.12(1)  0.5(1)  018(1)  0.20(1)  022(1)  0.24(1)  0.25(1)
(Bpa®)  015(7)  0.22(9)  0.18(6)  0.17(5)  0.19(6)  0.20(4)  0.21(3)
(M?/N?), 0082(1) 0.094(9) 0.11(2)  0.124(15) 0.24(12) 0.24(5)  0.36(2)
(M?/N?);  0.902(1) 0.893(1) 0.882(2) 0.867(2) 0.849(4)  0.826(6)  0.786(6)
A, 6.6(4) 4.8(4) 3.8(3) 3.4(2) 2.8(2) 2.5(1) 2.19(3)
Bug — InA® -1.90(6)  -1.57(8)  -1.32(9)  -1.21(7)  -1.05(8)  -0.91(4)  -0.78(2)
Al 6.8(7) 4.7(5) 3.7(4) 3.3(2) 2.8(3) 2.5(1) 2.17(3)
Bui —InA®  -1.92(10) -1.56(10) -1.32(10) -1.20(7)  -1.05(9)  -0.90(5)  -0.78(2)

Such a relationship is satisfied with the acceptance prob-
ability given by

AL ] . (4.12)

A(r?,s? | rf,s?) = min [1, — e

v Z(Wg)

When particle exchange is attempted, we first choose
at random the box from which a particle will be removed
and try to insert it into the other box in a position chosen
at random. If there is no overlap, the orientation of the
inserted spin is chosen with probability (4.9) as before.
In this step the acceptance probability, satisfying detailed
balance, is
A(r},st;i€b|r],s);i €a)

T 7 1197

VWwZ (W) na
Vo Z (WZ) np+1

= min |1 . (4.13)

The liquid-vapor equilibria of the Heisenberg ferromag-
net were simulated for several temperatures with a to-
tal number of 216 particles. Simulation runs were orga-
nized in cycles, a cycle consisting of NV, trial displacement
moves, N, trial interchanges of particles and one trial
change of volume. Technical details of the runs, as well
as results for thermodynamic properties are summarized
in Table II.

V. SPINODAL LINES
AND PHASE COEXISTENCE

Figure 4 shows the Curie lines obtained from the MSA
and RHNC equations together with the gas-liquid coex-
istence curve determined from the GEMC calculations.
An immediate observation is that the gas-liquid coexis-
tence lies for the most part below the line of Curie points.
The MSA and RHNC approximations give fairly consis-
tent results. However, whereas MSA yields a true spin-
odal for all densities this is so for the RHNC equation
only at densities po® > 0.2. At lower densities a quali-

tatively different behavior occurs in which the magnetic
susceptibility remains finite but presents a square root
branch point singularity, indicating the onset of complex
solutions (and breakdown of the real numerical solution).
Similar behavior is known to exist in other systems for ap-
proximations like the HNC or Percus-Yevick equations.
Following ideas of Belloni [31], we have investigated a
nonlinear fit of both compressibility and susceptibility to

Xﬁ(} =a/T*-Tr+b,

where T* = 1/K. The results, for po® = 0.01, are shown
in Fig. 5, which plots the difference

(5.1)

I S |
A= Xno ~ Xuo, > (5.2)
30 T T r T T T T T
———— RHNC Curie points
MSA Curie points
©  MC Curie points
e MCg-l /
/
//
/

20 / -

FIG. 4. Locus of Curie points and no-solution line in the
RHNC approximation (solid line) and MSA spinodal (dashed
line) vs MC estimates (diamonds). Gibbs ensemble estimates
of the gas-liquid coexistence are represented by solid circles.



49 PHASE TRANSITIONS IN A CONTINUUM MODEL OF THE . ..

0.008 - oS —

0.006 — ~ -

1 -1
o —Xuog
(=]

Q

R

T

/

/

|

P

0.002 - .

| | | 1
1.692 1.694 1.696 1.696

1/1*

FIG. 5. Variation of the inverse isothermal compressibility
and magnetic susceptibility (lower and upper curve, respec-
tively) in the vicinity of the nonsolution line at low density
(pg® = 0.01). RHNC results are denoted by circles and lines
correspond to a nonlinear fit to Eq. (5.1).

where the subscript s denotes the value computed for T7.
(The RHNC values are represented by circles and the re-
sults of the fit by a solid line.) A striking result is that
the singular point is the same for both compressibility
and magnetic susceptibilities. For the density considered
it corresponds to K, = 1.68953 + 0.000005. Great care
has been taken to obtain accurate results. The RHNC
equation was solved using a mesh of 16 384 grid points
spaced by Ar = 0.010. Reducing the number of points
by half hardly changed the location of the singular point.
For po3 > 0.2 a fit to Eq. (5.1) is no longer possible. In-
stead the magnetic susceptibility (but not the isothermal
compressibility) follows a power law

Xith = a(T* —T3,)" , (5.3)
in the vicinity of the nonsolution boundary with critical
exponent v = 1, close to the classical value. The vari-
ation of x5 as a function of temperature is shown in
Fig. 6 (log-log plot) for po3 = 0.3 (y = 1.008 + 0.0005).
The divergence of X130 is accompanied by a correspond-
ing divergence in X220 reflecting preferential parallel (ne-
matic) ordering of the spins. In antiferromagnetic sys-
tems only X220 diverges.

It might be possible that the failure of the RHNC
equation to capture the low density spinodal behavior is
connected with the inability of the equation to account
for clustering, which is important in low density systems
with strong attractive interactions. A similar specula-
tion has been put forward to explain related phenomena
in the restricted primitive model of electrolytes [32]. In
the MSA approximation (which does not reproduce clus-
tering effects correctly either) the boundary of complex
solutions always lies inside the spinodal [33]. Approxi-
mations that retain the structure of MSA at low densi-
ties (as, for instance, the crossover integral equation [21])
might be able to reproduce the spinodal behavior at low
densities [34] even if the treatment of association effects
is poor.
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FIG. 6. Inverse isothermal magnetic susceptibility in the
vicinity of the Curie temperature at moderate density
(po® = 0.3). RHNC results are denoted by solid circles and
the lines correspond to a nonlinear fit to Eq. (5.3).

An attempt has been made to compare the Curie tem-
peratures predicted by the RHNC and MSA approxima-
tions with estimates obtained from MC simulations. To-
wards this end we calculated the temperature dependence
of the magnetization M = (VM2/N) of a system of 500
particles in a cubic box with periodic boundary condi-
tions. Averages were taken over runs involving generally
of the order of 10 000-20 000 trial moves per particle after
equilibration. These are shown in Fig. 7 for two different
densities. As expected from extensive MC calculations of
the lattice version of the classical Heisenberg ferromagnet
(with nearest neighbor interactions) the magnetization
curves show appreciable rounding effects near the criti-
cal temperature due to the finite size of the system [35],
which preclude an accurate determination of the Curie
temperature. For the lattice systems these difficulties
have largely been overcome by applying finite-size scal-
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FIG. 7. Magnetization curves for a system of 500 particles
in a cubic box with periodic boundary conditions from MC
simulations.
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FIG. 8. Gas-liquid phase coexistence obtained from GEMC
simulations.

ing concepts. [For the most refined lattice calculations
of the three-dimensional (3D) Heisenberg model see Ref.
(36].] Such a computationally expensive analysis seemed
however, out of scope at the present stage of investiga-
tion of the off-lattice system. A rough estimate of the
Curie temperature was obtained by assigning it to the
temperature for which M ~ 0.5 (see Ref. [35]). The val-
ues so obtained compare favorably with both the RHNC
and MSA results (cf. Fig. 4 ) but are clearly not accurate
enough to assess the superiority of one theory over the
other.

Results for the gas-liquid coexistence estimated
through Gibbs ensemble simulation are shown in Fig. 4
and in more detail in Fig. 8. As mentioned before, this
transition cannot be analyzed by the integral equation
methods since it lies inside the nonsolution boundary
(i.e., inside the line of Curie points and/or the bound-
ary of complex solutions in the MSA). The fact that the
gas phase is mainly paramagnetic and the liquid phase is
ferromagnetic, except in the neighborhood of the critical
point, implies that both transitions will mostly be cou-
pled. The system will, however, lack a tricritical point
and the line of Curie points will end up at the gas-liquid
spinodal in a critical end point. The Heisenberg spin
fluid phase diagram is qualitatively similar to that of the
two-dimensional quantum case studied by Marx et al.
(8], but there a tricritical point is present. In our case,

19.0 1 19.0
15.04 b 15.0
10 - 1.0
704

3.0 -
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we see that the upper part of the gas-liquid coexistence
curve is below the magnetic spinodal, and the equilib-
rium takes place between orientationally ordered ferro-
magnetic states. The error bars near the order-disorder
transition indicate large density fluctuations associated
with large energy fluctuations. This can be easily under-
stood given the proximity of the Curie point.

Snapshots of configurations obtained from the MC sim-
ulations are shown in Figs. 9-13. Inside the two-phase
region, at densities po® = 0.1 (Figs. 9 and 10) and
po® = 0.3 (Fig. 11) one observes equilibrium coexistence
between magnetized liquid drops and gas. The organiza-
tion of the spins at high density (po® = 0.7) below and
above the Curie temperature (ferromagnetic and para-
magnetic phases, respectively) is shown in Figs. 12 and
13.
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APPENDIX: NUMERICAL SOLUTION
PROCEDURE

In what follows we briefly sketch the outline of the
hybrid Newton-Raphson solution procedure for the spin
fluid OZ equation. For simplicity we will use the follow-
ing conventions when naming the functions involved in
the numerical scheme : Ci(r;) = ricuo(r:) and Ci(k;) =
kjéuo(r;) with r; = ¢{Ar and k; = jAk, 4,j = 1,...,N

FIG. 9. Snapshot of a low
density ferromagnetic fluid con-
figuration of po® = 0.1 and
T* = 1.875. [Projection of the
spins (500) on the zy, yz, and
zz planes of the periodic sim-
ulation cell.] Distances are in

units of o.
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FIG. 11. 3D snapshots of a magnetized configuration at
po® = 0.3 and T* = 3. This thermodynamic state is inside
the two-phase region.

FIG. 12. 3D snapshots of a system of 500 spins at po® = 0.7
and T* = 10 (ferromagnetic phase).

and ArAk = 7/N. T(r;) and [';(k;) are similarly defined
in terms of vy0. With these definitions, the uncoupled OZ
relations in Fourier space read

pCi(k;)?

®y(k;) = Tu(k;) — % — pCi(F;) =0 (A1)

and the closure relations
N — _ 1 AXO
Ci(ri) = r.<exp( Bu(12) + - EA:FA(’S (12)

—Bo(T)) |llO>—r,-6m - F[(T,‘) . (A2)

We can now proceed to expand the direct correlation
function in k space in terms of the I'; functions [37]
around an initial estimate I'{,

Ci(k;) = CP(k;) + > Cuniis[Ta(ks) — T (k)] (A3)
i
where
o 957 L,
| EieE s
73 N
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4 1/‘}"%%\\{"\ )‘%\Qi%_
254 - .
s
I X g \
e N .
-1.0 |
-1.0 2.5 6.0 9.5

FIG. 13. Projection on the zy plane of the periodic sim-
ulation cell of an instantaneous configuration of 500 spins
in the paramagnetic (orientationally disordered) fluid phase
(po® = 0.7 and T* = 18.75).
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dCy(k;
Inij = doutks) | (A4)
dr's (k:)
This quantity can be shown to be equal to [37]
1 . . . .
Cixiij = N [Din(li = 31) = Duin(i + 5)] (A5)
with
dCl(’I‘i)> .
Diy(n) = ——= ) cosmwin . A6
IX( ) Z (dI‘)\(r,-) o ( )

From the closure relations (A2) one gets

4Cu(r:) \ _ [ oxol —Bu 1 LGN
(F3) —< p[ Bu(iz) + 1 3w (12

—Bo(r)]¢"’\°(12)|llo> — i -

(A7)

Hence, if we use the expansion of Eq.(A3) for j =
1,...,M [with 0 < k < kps representing the most sig-
nificant region in k space as far as the structure of I';(k)
is concerned], one can solve Eq. (A1) by Newton-Raphson
iterations

B (k) = D1 (k) = 313 M onas@a (k)
Al

(A8)

where the Jacobian matrix elements can be computed by
differentiation of Eq. (A1), to yield

Ci(k; Cy (k.
Ainsis = bijbin — —2 i(k;) o _ PCi(k;)
k; — pCu(k;) k; — pCi(k;)
Xclk;ij 3 (Ag)
with 7,7 = 1,..., M. Once the procedure converges one

must calculate the remaining values of ['y(k;) for j =
M +1,...,N. This is done by direct substitution in the
OZ relation (A1). Then I';(k) is transformed back to real
space, and a new estimate of I'(r;) is evaluated by using
Broyles procedure [38], which makes the method more
robust, i.e.,

F§B+1)(7‘1’) _ aF§a+1)(ri) + (1 _ a)l-\l(!)(rl-) . (AlO)

A value of o = 0.5 seems optimum. Convergence is fur-
ther accelerated by implementing a procedure that forces
o to approach one when getting close to the final solution
[14].
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